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Lithium induced disruptions in DIII-D:
analysis and modeling

l In DIII-D any attempt to place a solid lithium sample near
the outer strike point disrupts the discharge.

l Data from two experiments suggest that the lithium sample
melts and is partially injected into the core by a single
MHD event which then triggers the disruption.

l The detailed analysis of a low power lithium disruption
shot will be discussed.

l A conceptual model of the SOL current distribution during
the initial liquid lithium phase has been developed:
» with this initial condition it may be possible to reproduce the

injection event by numerically modeling the dynamics of the
sample in the liquid phase
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Low power DIII-D L-mode plasmas were used in an
attempt to do controlled studies of  Li (solid and

liquid) sputtering and transport

l The goal was to use very low power L-modes in order to
study liquid Li without disruptions (a previous experiment
disrupted during an ELM)
» The Li sample was exposed to 4 swept strike point shots, one with

the strike point 0.05 m from the sample and one with the strike
point 0.03 m from the sample (shot 105511).

» These plasmas had stored energies of less than 10% (about 0.14
MJ) a typical DIII-D H-mode plasma.

l During shot 105511 the sample appears to have remained
solid until about 3415 ms (2315 ms into the Ip plateau)
» The first indication of a change in the Li sample was a drop in the

jSOL measured by a tile current monitor 15o upstream along Bφ from
the DiMES probe.
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In a low power DIII-D L-mode plasma the core
lithium emission looks like that of a single pellet

The first peak in the
core Li is when the
injected droplet hits
the separatrix, the
second is the core
ablation peak and the
third is a locked mode
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The collapse of the core Te profile is consistent
with the injection of a single Li droplet

l An increase in the core
density of 3.6 X 1019 m-3

suggests that a single 3.2-
5.2 mm diameter Li droplet
(10-40 mg) caused the
disruption.

l A droplet with vN = 30 m/s
crosses the SOL in about
12 ms and travels about
0.27 m into the core after 9
ms.
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In LSN DIII-D plasmas a net SOL current ISOL
typically flows out of the row 13 divertor tiles

l The Li DiMES probe is located 15o (toroidally) or about
0.39 m along Bφ from the closest tile current monitor.
» A Li+1 cloud moves upstream toward the φ = 135o tile current

monitor with a v|| of about 70-100 m/s after the Li melt.
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The outer strike point is positioned 3 cm inside
the center of the Li DiMES sample on shot 105511

l EFIT equilibria uncertainties of ± 0.02 m
imply that the outer strike point could have
been within 0.005 m from the edge of the
Li sample at 3425 ms on shot 105511.
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The current distribution across the surface to the Li
sample is non-uniform and time dependent resulting

in radial components with complex j X B forces

J. Watkins, SNL

l The surface distribution
of jSOL across a solid or
liquid Li sample has not
yet been measured.

l A large influx of Li
neutrals following a
solid-liquid phase
change may have a
significant impact on
the jSOL surface
distribution.



tee-02alps 8

A better understanding of the internal Li current
distribution is needed to model the droplet ejection

l Additional experimental measurements and 3D dynamic
modeling of the liquid response are needed.

l Biasing experiments may be useful.
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The dynamics of the total SOL current through a
single row 13 tile during an ELM are quite complex

l SOL currents
during type I
ELMs are 10-20
times larger than
L-mode SOL
currents with
both positive and
negative spikes.

l ELMs pose a
significant
challenge for Li
divertors.
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Summary and conclusions

l In low power DIII-D plasmas Li disruptions appear to be
triggered by the injection of a single liquid Li droplet.

l The data suggest that J X B forces in the liquid cause the
injection but:
» A better understanding of the current distribution in the Li sample, as

well as self-consistent modeling of the liquid dynamics, is needed.

l New diagnostics are required to determine:
» When the Li sample becomes a liquid
» How the liquid surface evoleves
» How the current distribution in the sample changes with plasma

conditions and surface shape.

l Sample biasing may help control the injection process in L-
mode plasmas but will not provide a solution during ELMs


